Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43.
نویسندگان
چکیده
Connexin43 (Cx43) is involved in bone development, but its role in adult bone homeostasis remains unknown. To overcome the postnatal lethality of Cx43 null mutation, we generated mice with selective osteoblast ablation of Cx43, obtained using a Cx43fl allele and a 2.3-kb fragment of the alpha1(I) collagen promoter to drive Cre in osteoblasts (ColCre). Conditionally osteoblast-deleted ColCre;Cx43-/fl mice show no malformations at birth, but develop low peak bone mass and remain osteopenic with age, exhibiting reduced bone formation and defective osteoblast function. By both radiodensitometry and histology, bone mineral content increased rapidly and progressively in adult Cx43+/fl mice after subcutaneous injection of parathyroid hormone (PTH), an effect significantly attenuated in ColCre;Cx43-/fl mice, with Cx43-/fl exhibiting an intermediate response. Attenuation of PTH anabolic action was associated with failure to increase mineral apposition rate in response to PTH in ColCre;Cx43-/fl, despite an increased osteoblast number, suggesting a functional defect in Cx43-deficient bone-forming cells. In conclusion, lack of Cx43 in osteoblasts leads to suboptimal acquisition of peak bone mass, and hinders the bone anabolic effect of PTH. Cx43 represents a potential target for modulation of bone anabolism.
منابع مشابه
Critical Role of Activating Transcription Factor 4 in the Anabolic Actions of Parathyroid Hormone in Bone
Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 d...
متن کاملOsteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass.
Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling, to evaluate the temporal and skeletal...
متن کاملSuppression of p38α MAPK Signaling in Osteoblast Lineage Cells Impairs Bone Anabolic Action of Parathyroid Hormone.
Intermittent parathyroid hormone administration (iPTH) increases bone mass and strength by stimulating osteoblast number and activity. PTH exerts its anabolic effects through cAMP/protein kinase A (PKA) signaling pathway in mature osteoblasts and osteocytes. Here, we show that inactivation of the p38α MAPK-encoding gene with the use of an osteocalcin-cre transgene prevents iPTH bone anabolic ac...
متن کاملThe ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone.
The role of circulating IGF-I in skeletal acquisition and the anabolic response to PTH is not well understood. We generated IGF-I-deficient mice by gene deletions of IGF ternary complex components including: (1) liver-specific deletion of the IGF-I gene (LID), (2) global deletion of the acid-labile (ALS) gene (ALSKO), and (3) both liver IGF-I and ALS inactivated genes (LA). Twelve-week-old male...
متن کاملOverexpression of Secreted Frizzled-Related Protein 1 Inhibits Bone Formation and Attenuates Parathyroid Hormone Bone Anabolic Effects
Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (microCT). O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 20 شماره
صفحات -
تاریخ انتشار 2006